Перевод: с русского на английский

с английского на русский

critical support

  • 1 Architectural Support For Performance Critical Applications

    Education: ASPCA

    Универсальный русско-английский словарь > Architectural Support For Performance Critical Applications

  • 2 особо необходимые виды материальных средств

    Logistics: critical support

    Универсальный русско-английский словарь > особо необходимые виды материальных средств

  • 3 особо необходимые виды материальных средств и обслуживания

    Универсальный русско-английский словарь > особо необходимые виды материальных средств и обслуживания

  • 4 дистанционное техническое обслуживание

    1. remote sevice
    2. remote maintenance

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > дистанционное техническое обслуживание

  • 5 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 6 параллельная система ИБП

    1. parallel UPS system

     

    параллельная система ИБП
    -

    [Интент]

    Parallel Operation: The system shall have the option to install up to four (4) UPSs in parallel configuration for redundancy or capacity.
    1. The parallel UPS system shall be of the same design, voltage, and frequency. UPS modules of different size ratings shall be permitted to be paralleled together for purposes of increased capacity or UPS module redundancy. The UPSs in the parallel configuration shall not be required to have the same load capacity rating.
    2. Parallel Capacity: With N+0 system-level redundancy, up to 2MW of load can be supported by the system.
    3. Parallel Redundancy: With N+1 system-level redundancy, up to 1.5MW of load can be supported by the system, and only the UPS being replaced must be isolated from the source (bypass operation is not required for the entire system during the UPS replacement procedure).
    4. Output control: A load sharing circuit shall be incorporated into the parallel control circuits to ensure that under no-load conditions, no circulating current exists between modules. This feature also allows each UPS to share equal amounts of the total critical load bus. The output voltage, output frequency, output phase angle, and output impedance of each module shall operate in uniformity to ensure correct load sharing. This control function shall not require any additional footprint and shall be an integral function of each UPS. The static bypass switches shall be connected in parallel.
    5. Parallel System Controls: To avoid single points of failure, the UPS system shall have no single dedicated control system designed to control the operation of the parallel UPS system. Control of and direction of parallel UPSs shall take place via a master/slave relationship, where the first UPS to receive logic power asserts itself as a master. In the event of a master failure, a slave UPS shall take the role of master and assume the responsibility of the previous master UPS. Regardless of which UPS is master or slave, user changes to the system status, such as request for bypass, can be done from any UPS connected to the bus and all UPS on the bus shall transfer in simultaneously.
    6. Communication: Communication between modules shall be connected so that the removal of any single cable shall not jeopardize the integrity of the parallel communication system. Load sharing communications shall be galvanically isolated for purposes of fault tolerance between UPS modules. A UPS module's influence over load sharing shall be inhibited in any mode where the UPS inverter is not supporting its output bus. Transfers to and from bypass can be initiated from any online UPS in the system.
    7. Display: Each UPS multi-color LCD touch screen user interface shall be capable of using an active touch screen mimic bus to show the quantity of UPS(s) connected to the critical bus, as well as the general status of each UPS, such as circuit breaker status information. Any touchscreen display shall support the configuration of the [entire parallel] system and shall provide event and alarm data for all UPSs in the parallel configuration. A Virtual Display Application shall be available for download to the customer’s computer and shalll support remote monitoring of a complete system with up to 4 UPSs in parallel.
    8. Battery runtime: Each UPS must have its own battery solution. The battery solution for the entire system can be a combination of standard and third-party batteries, but each UPS must use only one battery solution – either standard or third-party batteries.
    9. Switchgear: A custom switchgear option shall be required for parallel operation.

    [Schneider Electric]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > параллельная система ИБП

  • 7 двигатель



    - (газотурбинный, поршневой, тепловой) — engine
    - (гидравлический, пневматический, электрический) — motor
    -, авиационный — aircraft engine
    двигатель, используемый или предназначенный к использованию в авиации для перемещения и (или) поддержания ла, на котором он установлен, в воздухе (рис. 46). — an engine that is used or intended to be used in propelting or lifting aircraft.
    - аналогичной конструкцииengine of identical design and сonstruction
    - без наддува (ид)unsupercharged engine
    -, безредукторный — direct-drive engine
    -, безредукторный винто-вентиляторный (незакопоченный) — unducted fan engine (udf)
    винтовентиляторы вращаются непосредственно силовой (свободной) турбиной с противоположным вращением рабочих колес. — fans are driven directly by a counter-rotating turbine, eliminating complexity of a reduction gearbox.
    -, бензиновый — gasoline engine
    -, боковой (рис. 13) — side engine
    - в подвесной мотогондолеpod engine
    -, вентиляторный, с противоположным вращением вентиляторов — contrafan engine
    - вертикальной наводки, приводной (стрелкового вооружения) — (gun) elevation drive motor
    -, винто-вентиляторный (тввд) — prop-fan engine
    -, включенный (работающий) — operating/running/engine
    -, внешний (по отношению к фюзеляжу) (рис. 44) — outboard engine
    - внутреннего сгоранияinternal-combustion engine
    -, внутренний (по отношению к наружному двигателю) (рис. 44) — inboard engine
    - воздушного охлаждения (пд)air-cooled engine
    двигатель, у которого отвод тепла от цилиндров производится воздухом, непосредственно обдувающим их. — an engine whose running temperature is controlled by means of air cooled cylinders.
    -, вспомогательный (всу) — auxiliary power unit (apu)
    -, выключенный — shutdown engine
    -, выключенный (неработающий) — inoperative engine
    -, высокооборотный — high-speed engine
    -, высотный — high-altitude engine
    -, газотурбинный (гтд) — turbine engine
    -, газотурбинный (вертолетныи) — helicopter turboshaft engine
    -,газотурбинный-энергоузел (стартер-энергоузел) — turbine-starter - auxiliary power unit, starter - apu
    - (-) генераторmotor-generator
    устройство для преобразования одного вида эл. энергии в другую (напр., переменный ток в постоянный). — а motor-generator combination for converting one kind of electric power to another (e.g. ас to dc)
    - горизонтальной наводки, приводной (стрелкового вооружения) — (gun) azimuth drive motor
    - двухвальной схемы (турбовальный)two-shaft turbine engine
    -, двухвальный турбовинтовой — two-shaft turboprop engine
    -, двухвальный турбореактивный — two-shaft /-rotor, -spool/turbojet engine
    -, двухкаскадный — two-rotor /-shaft, -spool/ engine, twin-spool engine
    двухвальный турбореактивный двигатель называется также двухроторным или двухкаскадным двигателем. — а two-rotor engine is a twoshaft or two-spool engine with lp and hp compressors and hp and lp turbines.
    -, двухкаскадный, двухконтурный, (турбореактивный) — two-rotor /twin-spool/ by-pass turbo-jet engine
    -, двухкаскадный, турбовальный, газотурбинный, со свободной турбиной — two-rotor /twin-spool/ turboshaft engine with free-power turbine
    -, двухкаскадный, турбовентиляторвый с устройством отклонения направления тяги — two-rotor /twin-spool/ turbofan engine with thrust deflector system
    -, двухконтурный — by-pass /bypass/ engine
    гтд, в котором, помимо основного внутреннего (первого) контура, имеется наружный (второй) контур, представляющий собой канал кольцевого сечения, оканчивающийся у реактивного сопла. — in а by-pass engine, a part of the air leaving the lp cornpressor is dueted through the by-pass duct around the engine main duct to the exhaust unit to be exhausted to the atmosphere.
    -, двухконтурный с дожиганиem во втором контуре — duct-burning by-pass engine
    -, двухконтурный со смешиванием потоков наружного и и внутренного контуров — by-pass exhaust mixing engine
    -, двухроторный — two-rotor engine
    - двухрядная звезда (пд)double-row radial engine
    двигатель, у которого цнлиндры расположены двумя рядами радиально относительнo одного oбщего коленчатоro вала. — an engine having two rows of cylinders arranged radially around а common crankshaft. the corresponding front and rear cylinders may or may not be in line.
    -, двухтактный (пд) — two-cycle engine
    -, дозвуковой — subsonic engine
    -, доработанный по модификации (1705) — engine incorporating mod. (1705), post-mod. (1705) engine
    -, звездообразный — radial engine
    поршневой двигатель с радиальным расположением цилиндров, оси которых лежат в одной, двух или нескольких плоскостях, перпендикулярных к оси коленчатого вала — an engine having stationary cylinders arranged radially around а commom crankshaft.
    -, звездообразный двухрядный — double-row radial engine
    -, звездообразный однорядный — single-row radial engine
    -, исполнительный (эл.) — (electric) actuator, servo motor
    -, исполнительный, канала курса (крена или тангажа) (гироплатформы) — azimuth (roll or pitch) servornotor
    -, карбюраторный (пд) — carburetor engine
    -, коррекционный (гироскопического прибора) — erection torque motor
    -, критический — critical engine
    двигатель, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолета, управляемости и избытке тяги. — "critical engineп means the engine whose failure would most adversely affect the performance or handling qualities of an aircraft.
    -, крыльевой (установленный на крыле) — wing engine
    - левого вращенияengine of lh rotation
    -, маломощный — low-powered engine
    -, многорядный (пд) — multirow engine
    -, многорядный звездообразный — multirow radial engine
    -, модифицированный — modified engine
    - модульной конструкцииmodule-construction engine

    lp compressor - module i, hp compressor - module 2, etc.
    -, мощный — high-powered engine
    -, недоработанный no модификацин (1705) — engine not incorporating mod. (1705), pre-mod. (1705) engine
    -, незакапоченный — uncowled engine
    - непосредственного впрыска (пд)fuel injection engine
    -, неработающий — inoperative engine
    -, одновальный (гтд) — single-shaft /single-rotor/ turbine engine
    -, одновальный двухконтурный — single-shaft /single-rotor/ bypass engine
    -, одновальный турбовентиляторный — single-shaft /single-rotor/ turbofan engine
    -, одновальный турбовинтовой — single-shaft turboprop engine
    -, одновальный турбореактивный — single-shaft /single-rotor/turbojet engine
    -, однорядный (пд) — single-row engine
    -, опытный — prototype engine
    двигатель определенного тиna, еще не прошедший типовые государственные испытания. — the tirst engine of a type and arrangement not approved previously, to be submitted for type approval test.
    -, основной — main engine
    -, оставшийся (продолжающий работать) — remaining engine
    -, отказавший — inoperative/failed/ engine
    - отработки (эл., исполнительный) — servomotor
    - отработки следящей системыservo loop drive motor
    - подтяга (патронной ленты)ammunition booster torque motor
    -, поперечный коррекционный (авиагоризонта) — roll erection torque motor
    -, поршневой (пд) — reciprocating engine
    - правого вращенияengine of rh rotation
    -, продольный коррекционный (авиагоризонта) — pitch erection torque motor
    -, прямоточный — ramjet engine
    двигатель без механического компрессора, в котором сжатие воздуха обеспечивается поступательным движением самого двигателя. — а jet engine with no meehanical compressor, and using the air for combustion compressed by forward motion of the engine.
    - работающийoperating engine
    -, работающий с перебоями — rough engine
    двигатель, работающий с неисправной системой зажигания или подачи топлива (рабочей смеси) — an engine that is running or firing unevenly, usually due to а faulty condition in either the fuel or ignition systems.
    - рамы крена (гироплатформыroll-gimbal servomotor
    - рамы курса (гироплатформыazimuth-gimbal servomotor
    - рамы тангажа (гироплатформы)pitch-gimbal servomotor
    -, реактивный — jet-engine
    двигатель, в котором энергия топлива преобразуется в кинетическую энергию газовой струи, вытекающей из двигателя, a получающаяся за счет этого сила реакции нenоcредственно используется как сила тяги для перемещения летательного аппарата. — an aircraft engine that derives all or most of its thrust by reaction to its ejection of combustion products (or heated air) in a jet and that obtains oxygen from the atmosphere for the combustion of its fuel.
    -, реактивный, пульсирующий — pulse jet (engine)
    применяется для непосредственного вращения несущеro винта вертолета. — pulse jets are designed for helicopter rotor propulsion.
    -, ремонтный — overhauled engine
    серийный двигатель, отремонтированный или восстановленный до состояния, удовлетворяющего требованиям серийного стандарта, и пригодный для дальнейшей эксплуатации в течение установленного межремонтного ресурса. — an engine which has been repaired or reconditioned to а standard rendering it eligible for the complete overhaul life agreed by the national authority.
    - с внешним смесеобразованием (пд)carburetor engine
    двигатель внутреннего сгорания, у которого горючая смесь образуется вне рабочего цилиндра. — an engine in which the fuel/air mixture is formed in the carburetor.
    - с внутренним смесеобразованиемfuel-injection engine
    двигатель, у которого горючая смесь образуется внутри рабочего цилиндра. — an engine in which fuel is directly injected into the cylinders.
    - с водяным охлаждением (пд)water-cooled engine
    - с высокой степенью сжатияhigh-compression engine
    - с нагнетателем (пд)supercharged engine
    - с наддувом (пд) с осевым компрессором (пд)supercharged engine axial-flom turbine engine
    - с передним расположением вентилятораfront fan turbine engine
    - с противоточной камерой сгорания (гтд)reverse-flow turbine engine
    - с редукторомengine with reduction gear
    - с форсажной камерой (гтд). двигатель с дополнительным сжиганием топлива в специальной камере за турбиной — engine with afterburner, afterburning engine, reheat(ed) engine, engine with thrust augmentor
    - с форсированной (взлетной) мощностьюengine with augmented (takeoff) power rating
    - с центробежным компрессором (гтд)radial-flow turbine engine
    -, серийный — series engine
    двигатель, изготовляемый в серийном производстве и соответствующий опытному двигателю, принятому при государственных испытаниях для серийного производства. — an engine essentially identiin design, in materials, and in methods of construction, with one which has been approved previously.
    - со свободной турбинойfree-luroine engine
    двигатель с двумя турбинами, валы которых кинематически не связаны. одна из турбин обычно служит для привода компрессора, а другая используется для передачи полезной работы потребителю, например, воздушному (или несущему) винту. — the engine with two turbines whose shafts are not mechanically coupled. one turbine drives the compressor, and the other free turbine drives the propeller or rotor.
    - следящей системы по внутреннему крену (гироплатформы)inner roll gimbal servomotor
    - следящей системы по наружному крену (гироплатформы)outer roll gimbal servomotor
    - следящей системы по курсу (гироплатформы)azimuth gimbal servomotor
    - следящей системы по тангажу (гироплатформы)pitch gimbal servomotor
    -, собственно — engine itself
    -, средний (рис. 44) — center engine
    - стабилизации гироплатформы — stable platform-stabilization servomotor/servo/
    -, стартовый (работающий при взлете) — booster
    -, стартовый твердотопливный — solid propellant booster
    -, трехкаскадный, турбореактивный, с передним вентилятором — three-rotor /triple-spool, triple shaft/ front fan turbo-jet engine
    -, турбовентиляторный — turbofan engine
    двухконтурный турбореактивный двигатель, в котором часть воздуха выбрасывается за первыми ступенями компрессора низкого давления, а остальная часть воздуха за кнд поступает в основной контур с камерами сгорания. — in the turbofan engine a part of the air bypassed and exhausted to atmosphere after the first (two) stages of lp compressor. about half of the thrust is produced by the fan exhaust.
    -, турбовентиляторный (с дожиганием в вентиляторном контуре) — duct-burning turbofan engine
    -, турбовинтовентиляторный — (turbo) propfan engine, unducted fan engine (ufe)
    -, турбовинтовой (твд) — turboprop engine
    газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, которая используется для вращения воздушного винта. — а turboprop engine is a turbine engine driving the propeller and developing an additional propulsive thrust by reaction to ejection of combustion products.
    -, "турбовинтовой" (вертолетный, с отбором мощности на вал) — turboshaft engine
    -, турбовинтовой, с толкающим винтом — pusher-turboprop engine
    -, турбопрямоточный — turbo/ram jet engine
    комбинация из турбореактивного (до м-з) и прямоточного (для больших чисел м). — combines а turbo-jet engine (for speeds up to mach 3) and ram jet engine for higher mach numbers.
    -,турбо-ракетный — turbo-rocket engine
    аналог турбопрямоточному двигателю с автономным кислородным питанием, — а turbo/ram jet engine with its own oxygen to provide combustion.
    -, турбореактивный — turbojet engine
    газотурбинный двигатель (с приводом компрессора от турбин), в котором тепло превращается только в кинетическую энергию реактивной струи. — a jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion being used both to rotate the turbine and to create a thrust-producing jet.
    -, установленный в мотогондоле — nacelle-mounted engine
    -, установленный в подвесной мотогондоле — pod engine
    -, четырехтактный (поршневой — four-cycle engine
    за два оборота коленчатого вала происходит четыре хода поршня в каждом цилиндре, по одному такту на ход. такт 1 - впуск всасывание рабочей смеси в цилиндр), такт 2 - матке рабочей смеси, такт 3 - рабочий ход (зажигание смеси), такт 4 - выхлоп (выпуск отработанных газов из цилиндра в атмосферу) — a common type of engine which requires two revolutions of the crankshaft (four strokes of the piston) to complete the four events of (1) admission of or forcing the charged mixture of combustible gas into the cylinder, (2) compression of the charge, (3) ignition and burning of the charge, which develops pressure (power) acting on the piston and (4) exhaust or expulsion of the charge from the cylinder.
    -, шаговой (эл.) — step-servo motor
    -, электрический — electric motor
    устройство, преобразующее электрическую энергию во вращательное механическое движение. — device which converts electrical energy into rotating mechanical energy.
    - (-) энергоузел, газотурбинный (ггдэ) — turbine starter /auxiliary power unit, starter/ apu
    для запуска основн. двигателей, хол. прокрутки (стартерный режим) и привода агрегатов самолета при неработающих двигателях (режим энергоузла), имеет свой электростартер.
    в зоне д. — in the region of the engine
    выбег д. — engine run-down
    гонка д. — engine run
    данные д. — engine data
    заливка д. (пд перед запуском) — engine priming
    замена д. — engine replacement /change/
    запуск д. — engine start
    испытание д. — engine test
    мощность д. — engine power
    на входе в д. — at /in/ inlet to the engine
    обороты д. — engine speed /rpm, rpm/
    опробование д. — engine ground test
    опробование д. в полете — in-flight engine test
    опробование д. на земле — engine ground test
    останов д. (выключение) — engine shutdown
    остановка д. (отказ) — engine failure
    остановка д. (выбег) — run down
    остановка д. вслествие недостатка масла (топлива) — engine failure due to oil (fuel) starvation
    отказ д. — engine failure
    перебои в работе д. — rough engine operation
    подогрев д. — engine heating
    проба д. (на земле) — engine ground test
    прогрев д. — engine warm-up
    прокрутка д. (холодная) — engine cranking /motoring/
    работа д. — engine operation
    разгон д. — engine acceleration
    стоянка д. (период, в течение которого двигатель не работает) — engine shutdown. one hundred starts must be made of which 25 starts must be preceded by at least a two-hour engine shutdown.
    тряска д. — engine vibration
    тяга д. — engine thrust
    установка д. — engine installation
    шум д. — engine noise
    вывешивать д. с помощью лебедки — support weight of the engine by a hoist
    выводить д. на требуемые обороты % — accelerate the engine to a required speed of %
    выключать д. — shut down the engine
    глушить д. — shut down the engine
    гонять д. — run the engine
    заливать д. (пд) — prim the engine
    заменять д. — replace the engine
    запускать д. — start the engine
    запускать д. в воздухе — (re)start the engine
    испытывать д. — test the engine
    опробовать д. на земле — ground test the engine
    останавливать д. — shut down the engine
    подвешивать д. — mount the engine
    поднимать д. подъемником — hoist the engine
    подогревать д. — heat the engine
    проворачивать д. на... оборотов — turn the engine... revolutions
    прогревать д. (на оборотах...%) — warm up the engine (at a speed of... %)
    продопжать полет на (двух) д. — continue flight on (two) engines
    разгоняться на одном д. — accelerate with one engine operating
    разгоняться при неработающем критическом д. — accelerate with the critical епgine inoperative
    сбавлять (убирать) обороты (работающего) д. — decelerate the engine
    увеличивать обороты (работающего) д. — accelerate the engine
    устанавливать д. — install the engine

    Русско-английский сборник авиационно-технических терминов > двигатель

  • 8 нагрузка


    load
    - (нервно-психическая и физическая)workload
    -, асимметричная — unsymmetrical load
    асимметричная нагрузка на самолет может возникнуть при отказе критического двигателя. — the airplane must be designed for unsymmetrical loads resulting from the failure of the critical engine.
    -, аэродинамическая — aerodynamic load
    -, безопасная — safe load
    -, боковая — side load
    для случая боковой нагрузки предполагается что самолет находится в горизонтальном положении при условии касания земли только колесами основных опор. — for the side load condition, the airplane is assumed to be in the level attitude with only the main wheels contacting the ground.
    -, вертикальная — vertical load
    -, вибрационная — vibration load
    -, воздушная — air load
    -, вызванная отказом двигателя, асимметричная — unsymmetrical load due to engine failure
    - генератораgenerator load
    -, гидравлическая — hydraulic load
    -, гироскопическая — gyroscopic load
    -, десантная — air-delivery load
    -, десантная (парашютная) — paradrop load
    -, динамическая — dynamic load
    нагрузка, возникающая при воздействии положительного (ипи отрицательного) ускорения на конструкцию ла. — any load due to acceleration (or deceleration) of an aircraft, and therefore proportional to its mass.
    -, динамическая, при полном вытягивании строп парашюта до наполнения купола — (parachute) deployment shock load the load which occurs when the rigging lines become taut prior to inflation of the canopy.
    -, динамическая, при раскрытии купола парашюта — (parachute) opening shock load

    maximum load developed during rapid inflation of the canopy.
    -, длительная — permanent load
    -, допускаемая прочностью самолета — load not exceeding airplane structural limitations
    -, допустимая — allowable load
    -, знакопеременная — alternate load
    -, индуктивная (эл.) — inductive load
    -, инерционная — inertia load
    -, коммерческая bес пассажиров, груза и багажа. — payload (p/l) weight of passengers, cargo, and baggage.
    - коммерческая, располагаемая — payload available
    -, максимальная коммерческая — maximum payload
    разность между максимальным расчетным весом без топлива и весом пустого снаряженного ла. — maximum design zero fuel weight minus operational empty weight.
    -, максимальная предельная радиальная (на колесо) — maximum radial limit load (rating of each wheel)
    -, максимальная статическая (на колесо) — maximum static load (rating of each wheel)
    -, маневренная — maneuvering load
    -, минимальная расчетная — minimum design load
    при определении минимальных расчетных нагрузок необходимо учитывать влияние возможных усталостных нагрузок и нагрузок от трения и заклинивания. — the minimum design loads must provide а rugged system for service use, including consideration of fatigua, jamming and friction loads.
    -, моментная (напр. поворотного срезного болта водила) — torque load
    - на вал (ротор)shaft (rotor) load
    - на генераторgenerator load
    - на гермокабину (от избыточного давления)pressurized cabin pressure differential load
    конструкция самолета допжна выдерживать полетные нагрузки в сочетании с нагрузками от избыточного давления в гермокабине. — the airplane structure must be strong enough to withstand the flight loads combined with pressure differential loads.
    - на двигательpower load on engine

    prevent too sudden and great power load being thrown on the engine.
    - на единицу площадиload per unit area
    - на колесоwheel load
    - на колонку (или штурвал, ручку) при продольном yправлении — elevator pressure (felt when deflecting control column (wheel or stick)
    - на конструкцию, выраженная в единицах ускорения (статическая и динамическая) — (static and dynamic) loads on structure expressed in g units
    - на крыло, удельная — wing loading
    часть веса самолета, приходящаяся на единицу поверхности крыла и равная частномy от деления полетного веса самолета на площадь крыла. — wing loading is gross weight of aeroplane divided by gross wing area.
    - на лопасть, удельная — blade loading
    - на моторамуload on engine mount
    - на мотораму, боковая — side load on engine mount
    - на мощность, удельная часть веса самолета, приходящаяся на единицу силы тяги, развиваемой его силовой установкой при нормальном режиме работы. — power loading the gross weight of an aircraft divided by the horsepower of the engine(s).
    - на орган управления (усилие)control pressure
    - на орган управления, пропорциональная величине отклонения поверхности управнения — control pressure proportional to amount of control surface deflection
    - на орган управления (штурвал, колонку, ручку управления, педали), создаваемая загрузочным механизмом — control pressure created by feel unit /or spring/
    - на орган управления (штурвал, колонку или педали), создаваемая отклоняемой поверхностью управления — control pressure created by control surface
    - на педали при путевом управленииrudder pressure (felt when deflecting pedals)
    - на площадь, сметаемую несущим винтом — rotor disc loading
    величина подъемной силы (тяги) несущего винта, деленная на площадь ометаемую винтом. — the thrust of the rotor divided by the rotor disc area.
    - на поверхность управления — control surface load, backpressure on control surface
    - на поверхность управления от порыва ветраcontrol surface gust load
    - на поверхность управления, удельная — control surface loading the mean normal force per unit area carried by an aerofoil.
    - на полfloor load
    - на пол, удельная — floor loading
    -, направленная к продольной оси самолета, боковая — inward acting side load
    -, направленная от продольной оси самолета, боковая — outward acting side load
    - на размах, удельная — span loading
    полетный вес самолета, деленный на квадрат размаха крыла. — the gross weight of an airplane divided by the square of the span.
    - на растяжение — tensile load /stress, strain/
    - на руль высоты (усилие при отклонении)backpressure on elevator
    - на руль направления (усилие при отклонении)backpressure on rudder
    - на сжатиеcompression load
    - на систему управленияcontrol system load
    максимальные и минимальные усилия летчика, прикладываемые к органам управления (в условиях полета) и передаваемые в точку крепления проводки управления к рычагу поверхности управления. — the maximum and minimum pilot forces are assumed to act at the appropriate control grips or pads (in a manner simulating flight conditions) and to be reacted at the attachment of the control system to control surface horn.
    - на скручиваниеtorsional load
    - на срезshear load
    - на тягу, удельная — thrust loading
    отношение веса реактивного самолета к тяге, развиваемой его двигателем (двигателями), — the weight-thrust ratio of а jet aircraft expressed as gross weight (in kg) divided by thrust (in kg).
    - на шасси при посадкеground load on the landing gear at touch-down
    - на шину (колеса)load on tire
    - на штурвал (ручку) при управлении no кренуaileron pressure (felt when deflecting control wheel (or stick)
    - на элерон (усилие при отклонении)backpressure on aileron
    -, номинальная (эл.) — rated load
    -, нормальная — normal load
    -, нормальная эксплуатационная (в системах управления) — normal operating load control system load that can be obtained in normal operation.
    -, ограниченная весом, коммерческая (платная) — weight limited payload (wlp)
    коммерческая нагрузка, oграниченная одним наиболее перечисленных ниже): — payload as restricted by the most critical of the following:
    1. взлетным весом снаряженного самолета за вычетом веса пустого снаряженного самолета и минимального запаса расходуемого топлива. — 1. operational takeoff weight minus operational empty weight minus minimum usable fuel.
    2. посадочным весом снаряженного самолета за вычетом веса пустого снаряженнаго самолета и анз топлива. — 2. operational landing weight minus operational empty weight minus flight reserve fuel.
    3. ограничениями по использованию отсеков. данная нагрузка не должна превышать макс. коммерческую нагрузку. — 3. compartment and other related limits. (it must not exceed maximum payload).
    -, ограниченная объемом, коммерческая (платная) — space limited payload (slp)
    нагрузка, ограниченная числом мест, объемными и другими пределами кабины, грузовых и багажных отсеков, — payload as restricted by seating,volumetric, and other related limits of the cabin, cargo, and baggage compartments. (it must not exceed maximum payload).
    -, омическая (эл.) — resistive load
    -, осевая — axial load
    -, основная — basic load
    - от встречного порыва (ветpa)load resulting from encountering head-on gust
    - от заклинивания (подвижных элементов)jamming load
    - от избыточного давления (в гермокабине)pressure differential load
    - от порыва (ветра)gust load
    случай нагружения конструкции самолета, особенного крыла, в результате воздействия на самолет вертикальных и горизонтальных воздушных течений (порывов), — the load condition which is imposed on an airplane, especially the wings, as a result of the airplane's flying into vertical or horizontal air currents.
    - от тренияfriction load
    -, параллельная линия шарниров (узлов подвески поверхностей управления). — load parallel to (control surface) hinge line
    -, переменная (по величине) — varying load, load of variable magnitude
    -, пиковая — peak load
    -, платная (коммерческая) — payload (p/l)
    beс пассажиров, груза и багажа. — weight of passengers, cargo, and baggage.
    -, повторная — repeated load
    расчеты и испытания конструкции должны продемонстрировать ее способность выдерживать повторные переменные нагрузки возможные при эксплуатации. — the structure must be shown by analysis, tests, or both, to be able to withstand the repeated load of variable magnitude expected in service.
    -, погонная — load per unit length
    -, полезная — payload (p/l)
    вес пассажиров, груза, багажа — weight of passengers, cargo, and baggage.
    -, полезная — useful load
    разность между взлетным весом снаряженного и весом пустого снаряженного ла. (включает: коммерческую нагрузку, вырабатываемые топливо и др. жидкости, не входящие в состав снаряжения ла). — difference between operational takeoff weight and operational empty weight. (it includes payload, usable fuel, and other usable fluids not included as operational items).
    -, полетная — flight load
    отношение составляющей аэродинамической силы (действующей перпендикулярно продольной оси самолета) к весу самолета. — flight load factors represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of the airplane) to the weight of the airplane.
    -, полная — full load
    включает вес экипажа, снаряжения, топлива и полезной нагрузки.
    -, постоянная — permanent load
    - предельная, разрушающая (по терминологии икао) — ultimate load
    -, продольная — longitudinal load
    -, равномерная — uniform load
    -, радиальная эксплуатационная (на каждое колесо шасcи) — radial limit load (rating of each wheel)
    -, разрушающая (расчетная) — ultimate load
    нагрузка, в результате которой возникает, или может возникнуть на основании расчетов, разрушение элемента конструкции. — the load which will, or is computed to, cause failure in any structural member.
    -, разрушающая (способная вызывать разрушение) — destructive load
    торможение может привести к появлению разрушающей нагрузки на переднее колесо. — braking can cause destructive loads on nosewheel.
    -, распределенная — distributed load
    -, рассредоточенная — distributed load
    -, расчетная — ultimate load
    расчетная нагрузка опрелеляется как произведение эксплуатационной нагрузки на коэффициент безопасности. — ultimate load is the limit load multiplied by the prescribed factor of safety.
    -, расчетная (по терминологии икао) — proof load
    -, расчетная (по усилиям в системе управления) — design load design loads are accepted in the absence of a rational analysis.
    -, скручивающая — torsional load
    -, служебная — operational items /load/
    включает экипаж, парашюты, кислородное оборудование экипажа, масло для двигателей и невырабатываемое топливо. — includes: crew, parachutes, crew's oxygen equipment, engine oil, unusable fuel.
    -, служебная (стандартная) — standard items
    служебная нагрузка может включать: нерасходуемые топливо и жидкости, масло для двигателей, огнетушители, аварийное кислородное оборудоавние, конструкции в буфете, дополнительное электронное оборудование. — may include, unusable fuel and other fluids, engine oil, toilet fluid, fire extinguishers, emergency oxygen equipment, structure in galley, buffet, supplementary electronic equipment.
    - снаряженного (самолета)operational load
    -, сосредоточенная — concentrated load
    -, статическая — static load
    постоянно действующая нагрузка, постепенно возрастающая от нуля до своего максимума при нулевом ускорении. — а stationary load or one that is gradually increased from zero to its maximum. it is an unaccelerated basic load.
    -, суммарная — total load
    -, ударная — impact load
    -, уравновешивающая — balancing load
    -, усталостная — fatigue load
    -, фрикционная — friction load
    -, центробежная (на ротор) — centrifugal loading (on rotor)
    -, частичная — partial load
    -, чрезмерная — overload(ing)
    -, эксплуатационная — limit load
    максимальная нагрузка, воздействующая на самолет в эксплуатации, — the strength requirements are specified in terms of limit loads (the maximum loads to be expected in service).
    -, эксплуатационная нормальная (на систему управления) — normal operating load, load obtained in normal operationtained in normal operation
    -, электрическая — (electrical) load
    весовая отдача по полезной н. — useful load-to-takeoff weight ratio
    зависимость платной н. от дальности полета — payload-range curve
    под н. — under load
    при установившемся режиме работы с полной н. — at steady full-load conditions
    распределение н. — load distribution
    точка приложения н. — point of load application
    характеристика н. — load characteristic
    включать (эл.) н. — activate load
    включать (эл.) н. на генератор, (аккумулятор) — apply load to (generator, battery)
    воспринимать н. — take up load
    выдерживать н. — withstand /support/ load
    испытывать h. — be subjected to load
    нести h. — carry load
    передавать н. — transmit load
    подключать (эл.) н. к... — apply load to...
    прикладывать — apply load to...
    работать без н. (об электродвигателе, преобразователе) — run unloaded
    сбрасывать (эл.) н. — deactivate load
    снимать н. (руля высоты) — relieve elevator pressure, adjust elevator trim tab, relieve pressure by adjusting elevator trim control
    создавать (маханическую) н. — impose load on...
    устанавливать за счет платной h. — install (smth) with payload penalty

    Русско-английский сборник авиационно-технических терминов > нагрузка

  • 9 поддаваться расчёту

    Поддаваться расчёту-- The gross features some few micrometers from the crack tip are amenable to calculation. Поддерживать - to support, to sustain (служить опорой); to suspend (что-либо на весу); to maintain, to keep, to hold (сохранять); to second (мнение, голос); to bolster (аргументами, данными)
     Consequently, we expect there to be one critical velocity that will support the film at, say, the minimum hanging point.
     Because there exists a range of gas velocities that will suspend the film in the tube without movement of the attachment point, there must also exist a range of film thicknesses.
     In the present case the model has been bolstered by the detailed flow field measurements.

    Русско-английский научно-технический словарь переводчика > поддаваться расчёту

  • 10 давление

    ( воздуха в камере шины) inflation, intake pressure авто, pressure, push, tension
    * * *
    давле́ние с.
    pressure
    воспринима́ть давле́ние — ( о конструкции) take up pressure; ( о датчике) sense the pressure
    выде́рживать давле́ние — withstand pressure
    давле́ние до (напр. вентиля, клапана) — the pressure upstream
    давле́ние за (напр. вентилем, клапаном) — the pressure downstream
    давле́ние па́дает — the pressure falls [drops, decreases]
    повыша́ть [поднима́ть] давле́ние — build up [raise] pressure
    повыше́ние давле́ния ( в воздухозаборнике воздушно-реактивного двигателя) [m2]за счёт скоростно́го напо́ра — ramming
    под давле́нием — under pressure; ( с указанием величины давления) under a pressure of (e. g., 100 atmospheres)
    подава́ть давле́ние — apply pressure
    давле́ние поднима́ется — the pressure rises
    приводи́ть давле́ние к этало́нному у́ровню — correct air-pressure readings to a common datum
    развива́ть давле́ние — build up [apply, generate] a pressure of …
    давле́ние растё́т — the pressure rises
    создава́ть давле́ние — pressurize
    спуска́ть [стра́вливать] давле́ние — release [exhaust] pressure
    уде́рживать давле́ние — hold pressure
    абсолю́тное давле́ние — absolute pressure
    аксиа́льное давле́ние
    1. маш. (end) thrust
    2. (напр. нагрузка вала на подпятник) axial [end] thrust
    атмосфе́рное давле́ние — atmospheric [barometric] pressure
    ба́ксовое давле́ние ( при спуске судна на воду) — end poppet [pivoting] pressure
    барометри́ческое давле́ние — atmospheric [barometric] pressure
    боково́е давле́ние — lateral [side] thrust, lateral [side] pressure
    вакуумметри́ческое давле́ние — vacuum-gauge pressure
    давле́ние вентиля́тора, динами́ческое — velocity pressure
    давле́ние вентиля́тора, по́лное — total pressure rise
    весово́е давле́ние — equilibrium pressure
    давле́ние ве́тра — wind pressure
    давле́ние в крити́ческой то́чке ( в потоке газа или жидкости) — stagnation pressure
    вне́шнее давле́ние — ambient [external] pressure
    вну́треннее давле́ние — intrinsic [internal] pressure
    давле́ние возникнове́ния кавита́ции — cavitation pressure
    давле́ние в перехо́дном режи́ме — transient pressure
    давле́ние впры́ска то́плива — injection pressure
    давле́ние впу́ска то́плива — intake [admission] pressure
    давле́ние в равнове́сной систе́ме — equilibrium pressure
    давле́ние вса́сывания то́плива — intake [admission] pressure
    давле́ние вспы́шки двс.explosion pressure
    втори́чное давле́ние горн.secondary pressure
    давле́ние в усло́виях есте́ственной тя́ги — natural draught pressure
    давле́ние в ши́не — inflation [tyre] pressure
    давле́ние в ши́не недоста́точное — the tyre is underinflated
    давле́ние в ши́не чрезме́рное — the tyre is overinflated
    давле́ние вы́садки метал.-об.upsetting pressure
    высо́кое давле́ние — heavy [high] pressure
    давле́ние выта́лкивания метал.repressing pressure
    давле́ние вытесне́ния ( топлива в ЖРД) — pressurization pressure
    давле́ние га́зов на колошнике́ метал.top gas pressure
    гидростати́ческое давле́ние — hydrostatic pressure
    го́рное давле́ние — rock pressure
    давле́ние гру́нта — soil pressure
    действи́тельное давле́ние — effective pressure
    динами́ческое давле́ние — dynamic pressure
    давле́ние диссоциа́ции — dissociation pressure
    до́нное давле́ние ракет.base pressure
    допусти́мое выпускно́е давле́ние ( вакуум-насоса) — blank-off pressure
    давле́ние дутья́ — blast pressure
    забо́йное давле́ние горн.seam pressure
    закрити́ческое давле́ние — supercritical pressure
    давле́ние звуково́го излуче́ния — sound pressure
    звуково́е давле́ние — sound pressure
    избы́точное давле́ние
    2. (внутри замкнутого объёма здания и т. п. по отношению к окружающей среде) positive pressure
    3. ( наддува гермокабины) differential pressure, pressure differential
    4. метал. surplus [excessive] pressure
    давле́ние излуче́ния — radiation pressure
    индика́торное давле́ние — indicated pressure
    инерцио́нное давле́ние — inertia [mass] pressure
    ионизацио́нное давле́ние ( газа) — ionization pressure
    испыта́тельное давле́ние — test pressure
    давле́ние истече́ния — flow pressure
    капилля́рное давле́ние — capillary pressure
    каса́тельное давле́ние авто — circumferential [peripheral] pressure
    квазигидростати́ческое давле́ние — quasihydrostatic pressure
    кинети́ческое давле́ние — kinetic pressure
    когезио́нное давле́ние — cohesive [cohesion] pressure
    колло́идно-осмоти́ческое давле́ние — colloid-osmotic pressure
    коне́чное давле́ние — terminal pressure
    конта́ктное давле́ние — contact pressure
    давле́ние конта́ктной пове́рхности электро́да свар.point pressure
    крити́ческое давле́ние — critical pressure
    давле́ние кро́вли горн. — roof [top] pressure
    лобово́е давле́ние ав.ram
    манометри́ческое давле́ние — gauge pressure
    мгнове́нное давле́ние — dynamic pressure
    ме́стное давле́ние — localized pressure
    давле́ние мета́лла на валки́ прок. — roll force, rolling pressure
    давле́ние мета́лла на валки́, уде́льное прок.roll-separating force
    давле́ние набега́ния ( одной детали на другую) — climbing [running-on] pressure
    давле́ние набега́ющего пото́ка — wind-blast pressure
    давле́ние на вхо́де — inlet pressure
    давле́ние на вы́ходе — outlet pressure
    давле́ние нагнета́ния — discharge pressure
    давле́ние нагру́зки — load pressure
    давле́ние на грунт — soil pressure
    давле́ние надду́ва — ( в системах подачи топлива в ЖРД) pressurization pressure; ( в поршневых двигателях) boost [supercharge] pressure
    давле́ние, напра́вленное внутрь — inward pressure
    давле́ние, напра́вленное вовне́ — outward pressure
    давле́ние насыще́ния — saturation pressure
    давле́ние на у́ровне мо́ря — sea level pressure
    нача́льное давле́ние — initial pressure
    давле́ние на щё́тку эл.brush pressure
    ни́зкое давле́ние ( по сравнению с требуемым) — underpressure
    номина́льное давле́ние — nominal pressure
    норма́льное давле́ние
    давле́ние обжа́тия прок.draught pressure
    односторо́ннее давле́ние — one-sided pressure
    опо́рное давле́ние — bearing [support] pressure
    осево́е давле́ние
    1. маш. (end) thrust
    2. (напр. нагрузка вала на подпятник) axial [end] thrust
    осмоти́ческое давле́ние — osmotic pressure
    оста́точное давле́ние — residual pressure
    давле́ние отбо́ра тепл.extraction pressure
    давле́ние па́ра (напр. в котле, турбине) — steam pressure
    парциа́льное давле́ние — partial pressure
    давле́ние пера́ на бума́гу ( в самописцах) — pen-to-paper pressure
    переме́нное давле́ние — alternating pressure
    давле́ние печа́ти — printing pressure
    пи́ковое давле́ние — peak pressure
    пластово́е давле́ние горн.seam pressure
    пове́рхностное давле́ние — surface pressure
    давле́ние пода́чи (напр. топлива, масла, кислорода и т. п.) — delivery pressure
    давле́ние под колошнико́м ( доменной печи) — top pressure
    давле́ние под сво́дом ( мартеновской печи) — roof pressure
    по́лное давле́ние ( потока) — impact [Pitot] pressure
    давле́ние порообразова́ния рез.blowing pressure
    постоя́нное давле́ние — constant pressure
    поясно́е давле́ние стр.circumferential pressure
    преде́льное давле́ние — limiting pressure
    преде́льное, допусти́мое давле́ние — maximum safe pressure
    давле́ние прессова́ния метал.compacting pressure
    приведё́нное давле́ние — reduced pressure
    давле́ние проду́вки — scavenging pressure
    давле́ние прока́тки — rolling pressure
    промежу́точное давле́ние — intermediate pressure
    равнове́сное давле́ние — equilibrium pressure
    радиа́льное давле́ние ( нагрузка) — radial thrust
    давле́ние разреже́ния — expansion pressure
    разруша́ющее давле́ние — collapsing pressure
    разрывно́е давле́ние — bursting pressure
    раскли́нивающее давле́ние — disjoining [wedging] pressure
    расчё́тное давле́ние — design pressure
    реакти́вное давле́ние — reaction pressure
    сверхвысо́кое давле́ние — ultrahigh pressure
    сверхкрити́ческое давле́ние — supercritical pressure
    давле́ние све́та — light pressure
    давле́ние сгора́ния — combustion pressure
    давле́ние сду́ва аргд.blowing-off pressure
    давле́ние сжа́тия — compression pressure
    сплю́щивающее давле́ние ( в производстве труб) — collapsing pressure
    стати́ческое давле́ние — static pressure
    давле́ние сцепле́ния
    1. авто clutch pressure
    2. ( молекулярное) cohesive pressure
    тангенциа́льное давле́ние — circumferential [peripheral] pressure
    давле́ние торможе́ния
    1. авто brake pressure
    2. аргд. stagnation pressure
    уде́льное давле́ние — unit (area) pressure
    давле́ние у земли́ — ground-level pressure
    управля́ющее давле́ние — control pressure
    уравнове́шивающее давле́ние — balancing pressure
    установи́вшееся давле́ние — steady-state pressure
    давле́ние фильтра́ции — percolation pressure
    давле́ние формова́ния пласт. — moulding [shaping] pressure
    электростати́ческое давле́ние — electrostatic pressure
    этало́нное давле́ние — reference pressure
    эффекти́вное давле́ние — effective pressure
    * * *

    Русско-английский политехнический словарь > давление

  • 11 момент

    instance, moment, ( времени) point
    * * *
    моме́нт м.
    1. физ., мех. moment
    моме́нт возника́ет в, напр. пло́скости — moment occurs in, e. g., a plane
    моме́нт возника́ет в, напр. сече́нии — moment occurs in [at], e. g., a cross-section
    затя́гивать (болт, гайку) [m2]с моме́нтом … кг м — torque (a nut, bolt) to … kg m
    моме́нт, напр. ли́нии или пове́рхности относи́тельно оси́ — moment, e. g., of a line or surface with respect to an axis
    моме́нт относи́тельно, напр. це́нтра или оси́ — a moment about, e. g., the origin or axis
    прикла́дывать моме́нт к оси́ — apply a torque about an axis
    развива́ть (враща́ющий) моме́нт — develop a torque
    уравнове́шивать моме́нт — balance a moment
    уравнове́шивать моме́нты — place moments in equilibrium
    2. ( время) moment, instant, time
    абсолю́тный моме́нт — absolute moment
    аэродинами́ческий моме́нт — aerodynamic [air] moment
    ба́лочный моме́нт — girder moment
    ветрово́й моме́нт — wind moment
    моме́нт в коло́нне — column moment
    возмуща́ющий моме́нт — disturbing [exciting] moment
    восстана́вливающий моме́нт — restoring [righting, stabilizing] moment
    моме́нт в пролё́те — moment of span
    враща́ющий моме́нт — torque
    моме́нт вре́мени, нача́льный — zero time
    моме́нт выгора́ния то́плива — burn-out time
    моме́нт вы́зова тлф.call moment
    моме́нт выключе́ния дви́гателя — cut-off time
    гироскопи́ческий моме́нт — gyroscopic moment
    демпфи́рующий моме́нт — damping moment
    дестабилизи́рующий моме́нт — destabilizing [disturbing] moment
    дипо́льный моме́нт — dipole moment
    дифференту́ющий моме́нт — trimming moment
    дополни́тельный моме́нт — excess torque
    моме́нт жё́сткости — moment of stiffness
    моме́нт зажига́ния двс. — firing point, firing position
    замедля́ющий моме́нт — retarding moment
    моме́нт затуха́ния — damping moment
    моме́нт затя́жки (напр. винта, гайки) — tightening torque
    изгиба́ющий моме́нт — bending moment
    изгиба́ющий моме́нт в консо́ли — cantilever bending moment
    изгиба́ющий, волново́й моме́нт — wave bending moment
    изгиба́ющий моме́нт на ти́хой воде́ — still water bending moment
    изгиба́ющий, приведё́нный моме́нт — equivalent bending moment
    моме́нт и́мпульса — angular momentum, moment of momentum
    моме́нт ине́рции — moment of inertia
    моме́нт ине́рции, гла́вный — principal moment of inertia
    моме́нт ине́рции, осево́й — centroidal moment of inertia
    моме́нт ине́рции относи́тельно норма́льной оси́ — directional moment of inertia, inertia yawing moment
    моме́нт ине́рции относи́тельно попере́чной оси́ — longitudinal moment of inertia, inertia pitching moment
    моме́нт ине́рции относи́тельно продо́льной оси́ — lateral moment of inertia, inertia rolling moment
    моме́нт ине́рции, поля́рный — polar moment of inertia
    моме́нт ине́рции, приведё́нный — equivalent moment of inertia
    моме́нт ине́рции, сме́шанный — product of inertia
    моме́нт ине́рции, центробе́жный — product of inertia
    квадрупо́льный моме́нт — quadrupole moment
    кинети́ческий моме́нт — angular momentum, moment of momentum
    моме́нт коли́чества движе́ния — angular momentum, moment of momentum
    моме́нт коли́чества движе́ния, со́бственный — intrinsic angular momentum, spin
    концево́й моме́нт — end moment
    моме́нт корре́кции ( в гироскопических приборах) — slaving torque
    моме́нт кре́на ав.roll(ing) moment
    креня́щий моме́нт мор.heeling moment
    крити́ческий моме́нт — critical moment
    крутя́щий моме́нт — torque
    крутя́щий моме́нт дви́гателя — engine torque
    крутя́щий моме́нт несу́щего винта́ ав.rotor torque
    крутя́щий, пи́ковый моме́нт — maximum [peak] torque
    крутя́щий, пусково́й моме́нт — starting torque
    моме́нт круче́ния — torsional moment
    моме́нт крыла́ — wing moment
    магни́тный моме́нт — magnetic moment
    моме́нт нагру́зки — load moment, load torque
    неуравнове́шенный моме́нт — unbalanced [unstable] moment
    обра́тный моме́нт — back moment
    одноо́сный моме́нт — single-axis torque
    опо́рный моме́нт — moment of a support
    опроки́дывающий моме́нт
    1. tilting [overturning] moment; pull-out torque
    2. мор. capsizing [overturning] moment
    3. ав. disturbing moment
    орбита́льный моме́нт — orbital moment
    моме́нт осто́йчивости — stability moment
    моме́нт осто́йчивости ма́ссы — weight-stability moment
    моме́нт осто́йчивости фо́рмы — form-stability moment
    моме́нт относи́тельно пере́дней кро́мки ав.leading-edge moment
    моме́нт относи́тельно середи́ны хо́рды ав.half-chord moment
    моме́нт отпира́ния — запира́ния ( в функциональных преобразователях) вчт., элк.breakpoint
    моме́нт от постоя́нной нагру́зки — dead-load moment
    моме́нт отсе́чки дви́гателя косм.cut-off time
    моме́нт от со́бственного ве́са — dead-load moment
    моме́нт отце́пки косм.time of release
    моме́нт па́ры сил — moment of a couple (of forces)
    перехо́дный моме́нт — transient torque
    моме́нт пло́щади, стати́ческий — area-moment ratio
    моме́нт по што́пору ав.prospin(ning) moment
    моме́нт прока́тки — rolling torque
    противоде́йствующий моме́нт — countertorque, restoring torque
    моме́нт про́тив што́пора ав.antispin(ning) moment
    пусково́й моме́нт — starting torque
    разруша́ющий моме́нт — breaking moment, moment of rupture
    моме́нт распределе́ния вероя́тности — moment of a frequency distribution
    расчё́тный моме́нт — design moment
    реакти́вный моме́нт — reactive moment; reactive torque
    результи́рующий моме́нт — net [resulting] moment
    моме́нт руля́ высоты́ — elevator moment
    моме́нт руля́ направле́ния — rudder moment
    моме́нт ры́скания ав.yawing moment
    сва́ливающий моме́нт ав.stalling moment
    моме́нт си́лы — moment of force
    синхронизи́рующий моме́нт — synchronizing torque
    скру́чивающий моме́нт — twisting moment
    сме́шанный моме́нт ( в теории вероятностей) — product moment
    моме́нт сно́са ав.drifting moment
    со́бственный моме́нт — intrinsic moment
    моме́нт сопротивле́ния — moment of resistance
    моме́нт сопротивле́ния враще́нию — antitorque moment
    моме́нт сопротивле́ния попере́чного сече́ния — section modulus
    спи́новый магни́тный моме́нт — spin magnetic moment
    моме́нт сре́за — moment of shearing
    моме́нт сры́ва — break-away torque
    стабилизи́рующий моме́нт — stabilizing moment
    стати́ческий моме́нт — static moment
    моме́нт стра́гивания на ли́нии ста́рта ав.starting point
    моме́нт тангажа́ — pitching moment
    моме́нт те́ла, магни́тный — magnetic moment of a body
    моме́нт те́ла, электри́ческий — electric moment of a body
    тормозно́й моме́нт — braking [drag, retarding] torque
    моме́нт тре́ния — friction(al) torque
    моме́нт тро́гания ( электродвигателя) — break-away torque, жарг. kick-off torque
    моме́нт тя́ги — thrust moment
    моме́нт упру́гости — moment of elasticity
    ускоря́ющий моме́нт — accelerating moment
    моме́нт успокое́ния — damping torque
    моме́нт усто́йчивости — moment of stability
    моме́нт центробе́жной па́ры — centrifugal couple moment
    моме́нт центробе́жной си́лы — centrifugal moment
    шарни́рный моме́нт — hinge moment
    электри́ческий моме́нт — electric (dipole) moment
    моме́нт ядра́ — nuclear spin; nuclear magnetic moment

    Русско-английский политехнический словарь > момент

  • 12 точка

    dot, period вчт., full point полигр., point, site, spot, ( знак препинания) full stop
    * * *
    то́чка ж.
    1. мат. point
    в то́чке — at (the) point …
    взять отме́тку то́чки геод. — take a point, determine [establish] the elevation of a point
    исходи́ть из то́чки — issue [radiate, extend, emanate] from a point
    переводи́ть то́чку из положе́ния x0 в положе́ние x1 киб.steer x0 to x1
    с вы́кинутой то́чкой — punctured (e. g., of an interval)
    4. ( затачивание) grinding, sharpening
    то́чка аэросни́мка, гла́вная — principal point of an aerial photograph
    находи́ть гла́вную то́чку аэросни́мка — locate the principal point of an aerial photograph
    ба́зисная то́чка — base mark, base point
    барометри́ческая то́чка — barometrical (levelling) point
    бесконе́чно удалё́нная то́чка — point at infinity, infinite point, infinity
    взаи́мно обра́тная то́чка — inverse point
    взаи́мно сопряжё́нная то́чка — conjugate point
    то́чка визи́рования — point of sight, aiming [bearing, sighting] point
    внеосева́я то́чка — extra-axis point
    то́чка воды́, тройна́я — triple point of water
    то́чка воспламене́ния — ignition point
    то́чка вспы́шки — flash point
    то́чка вхо́да в програ́мму или подпрогра́мму вчт.entry point to a program or a subprogram
    то́чка вы́хода на орби́ту — point of injection into orbit
    гла́вная то́чка — principal point
    диакрити́ческая то́чка ( на кривой намагничивания) — diacritical point
    то́чка зажига́ния — firing point
    то́чка заме́ра — measuring point; measuring station
    то́чка замерза́ния — freezing point
    то́чка засто́я мех.stagnation point
    то́чка затвердева́ния — solidification point
    то́чка затвердева́ния зо́лота — gold point
    то́чка затвердева́ния серебра́ — silver point
    то́чка зени́та — zenith point
    зерка́льная то́чка — mirror point
    то́чка зре́ния — point of view, standpoint
    иденти́чная то́чка топ. — conjugate [homologous image, matching] point
    то́чка изло́ма криво́й — breakpoint
    изобража́ющая то́чка — representative point
    изоли́рованная то́чка — isolated point, acnode
    то́чка испаре́ния — evaporating [vaporization] point
    исхо́дная то́чка — datum [reference] point, origin; геод., топ. main base, head-of-the-line, initial [starting] point
    кардина́льная то́чка опт.cardinal point
    то́чка каса́ния — point of tangency
    то́чка каса́ния Земли́ ( самолетом) — touch-down point
    то́чка кипе́ния — boiling point
    повыша́ть то́чку кипе́ния — elevate the boiling point (of …)
    пони́жать то́чку кипе́ния — depress the boiling point (of …)
    то́чка кипе́ния, нача́льная — initial boiling point
    то́чка конверге́нции геод., картогр.convergence point
    конденсацио́нная то́чка — condensation point
    коне́чная то́чка
    1. геод., топ. finishing [terminal] point
    2. ( титрования) end point
    то́чка конта́кта — contact point
    контро́льная то́чка — check point
    кра́тная то́чка — multiple point
    крити́ческая то́чка
    1. critical point
    2. аргд. stagnation point
    крити́ческая то́чка при охлажде́нии метал. — Ar -point
    то́чка Кюри́, магни́тная — Curie point, magnetic transition temperature
    то́чка магистра́ли, нача́льная геод.initial mark of the base (line)
    материа́льная то́чка — material point, particle
    мё́ртвая то́чка
    1. ( трубопровода) anchoring point
    мё́ртвая, ве́рхняя то́чка — top dead centre
    мё́ртвая, ни́жняя то́чка — bottom dead centre
    то́чка минима́льного подхо́да — the closest point of approach
    то́чка ми́нимума то́ка ( туннельного диода) — valley point
    то́чка наблюде́ния геод., топ. — point of observation, point of sight, point of view, aiming point
    то́чка нади́ра — nadir point, photographic nadir
    то́чка насыще́ния — saturation point
    нейтра́льная то́чка — neutral point
    то́чка неопределё́нности мат.ambiguous point
    неосо́бая то́чка мат. — regular [nonsingular] point
    нивели́рная то́чка — point of level(ling), level(l)ing point
    нулева́я то́чка — null [zero] point
    нулева́я, иску́сственная то́чка эл.artificial earthing point
    опо́рная то́чка — (point of) control
    опо́рная, высо́тная то́чка — vertical control point
    опо́рная, пла́новая то́чка — horizontal [plan] control point
    то́чка опо́ры — point of support, point of bearing, supporting point, fulcrum
    то́чка осажде́ния — precipitation point
    осо́бая то́чка мат. — singular point, singularity
    то́чка отбо́ра электропита́ния (особ. для бытовых приборов) — convenience outlet
    отождествлё́нная то́чка — conjugate [homologous image, matching] point
    то́чка отры́ва пото́ка аргд. — separation [break-away] point
    то́чка переги́ба криво́й — inflection point, point of inflection
    то́чка пересече́ния — intersection point, cross-point, point of intersection
    то́чка перехо́да — transition point
    то́чка перехо́да в жи́дкую фа́зу — liquefaction point
    то́чка плавле́ния — melting [fusion] point
    то́чка поворо́та — turning point
    пограни́чная то́чка — boundary point
    то́чка подключе́ния ( в теории цепей) — terminal
    то́чка поко́я — stationary [rest] point, point of rest
    полигонометри́ческая то́чка — transit [traverse, polygonometric] point
    то́чка полови́нной мо́щности — half-power point
    то́чка помутне́ния — cloud point
    потенциа́льно заземлё́нная то́чка — брит. virtual earth; амер. virtual ground
    то́чка превраще́ния — transformation point
    то́чка привя́зки геод., топ. — point of reference, junction [tie] point
    то́чка приложе́ния нагру́зки — load point
    то́чка приложе́ния подъё́мной си́лы — lift centre, centre of lift
    то́чка приложе́ния си́лы — point of application, force point
    рабо́чая то́чка ( на характеристике радиолампы) — operating [quiescent, Q] point
    то́чка равнове́сия — equilibrium point
    то́чка разветвле́ний — branch point; ( на структурных схемах систем регулирования) (data) take-off point
    то́чка разветвле́ния схе́мы — junction point of a network
    то́чка размягче́ния — softening point
    то́чка разры́ва непреры́вности аргд.discontinuity (point)
    ра́стровая то́чка полигр. — screen [half-tone] dot
    то́чка ре́перная то́чка
    1. datum [reference] point
    2. ( термометра) fixed point
    то́чка росы́ — dew point
    сварна́я то́чка — spot weld, weld spot
    то́чка сво́да, вы́сшая — roof crown
    седлова́я то́чка мат.saddle point
    то́чка сма́зки — lubrication point
    то́чка с нулевы́м потенциа́лом — point at zero potential, datum point
    соотве́тственная то́чка топ. — conjugate [homologous image, matching] point
    сопряжё́нная то́чка — conjugate point
    сре́дняя то́чка — midpoint
    сре́дняя то́чка на обмо́тке (напр. трансформатора) — centre tap
    то́чка сры́ва пото́ка аргд. — separation [burble] point
    то́чка стеклова́ния — glass-transition point
    то́чка стоя́ния геод., топ. — point of observation, point of sight, point of view, aiming point
    сумми́рующая то́чка ( в операционном усилителе) — summing junction
    то́чка схо́да мат.vanishing point
    счисли́мая то́чка навиг. — dead-reckoning [D.R.] position
    то́чка та́яния — melting point
    то́чка теку́чести — flow point
    тройна́я то́чка — triple point
    узлова́я то́чка мат. — nodal point, node
    устано́вочная то́чка — work point
    то́чка шарни́ра — hinge point
    эвтекти́ческая то́чка — eutectic point
    эквивале́нтная то́чка ( в титровании) — equivalence point

    Русско-английский политехнический словарь > точка

  • 13 например

    Among other things, the paper stated that...

    The direction of a light ray can be changed by passing it from one medium to another, as from air to water.

    For iron, as an example, the density would be equal to...

    Michelangelo, for one, protested against...

    This Group was previously known as the Inert Gases or Rare Gases. As will be seen, argon for one is certainly not rare, and xenon and krypton are not inert.

    Once the ordered arrangements have been disrupted, such as by melting (or dissolving) the compound ions can move more freely.

    Thus for a rectangular or square aperture the wavefront may be subdivided into...

    For one example (or thing), they were able to synthesize a number of amino acids from...

    To illustrate,...

    To take an illustration,...

    To take one (or an) example,...

    After capturing one type of carrier, say, an electron, the centre would become negatively charged.

    These materials include some of the rare earth elements, such as caesium.

    * * *
    Например - for example, for instance; say; for one; e.g.; such as (при перечислении); to give an example
     Consequently, we expect there to be one critical velocity that will support film at, say, the minimum hanging point.
     I for one am not upset.
     For a specific engine, for instance, the performance of the model could often be improved by adding terms such as fuel air ratio or humidity.
     Moreover, the flame must cope with the various abnormal conditions that are sometimes encountered in flight, such as those created by the ingestion of tropical rain or ice.
     Test codes allow some variations on Mach number and volume ratio, such as
     M, percent of Design 95-105
     VR, percent of Design 95-105.
     An increase in heat and mass transfer rates could be advantageous in some cases and therefore desirable (e.g., internal combustion engines).
     To give an example, for t/c = 1 percent and j = 0.5 it can be seen from Fig. that DP = 0.65.
    —можно сослаться, например, на

    Русско-английский научно-технический словарь переводчика > например

  • 14 точка

    1.point 2.station
    точка весеннего равноденствия
    1.vernal equinox 2.First Point of Aries
    точки внутри ячейки
    inner cell dots
    точка востока
    east point
    точки в тени
    umbral dots
    точка запада
    west
    точка зенита
    zenith point
    точка зрения
    1.standpoint 2.viewpoint
    точка изображения
    опт. image point
    точка кульминации
    culmination point
    точки Лагранжа
    Lagrangian points
    точка либрации
    libration point
    точка наведения
    adjustment point
    точка опоры
    support point
    точка осеннего равноденствия
    1.autumn equinox 2.First Point of Libra
    точка пересечения
    1.crossover point 2.intersection point
    точка пересечения орбит
    orbit node
    точка поворота на диаграмме спектр-светимость
    turnoff point
    точка равновесия
    equilibrium point
    точка равноденствия
    equinox
    точка расслоения эмульсии
    фото. break point
    точка росы
    dew point
    точка сближения
    approach point
    точка севера
    north point
    точки солнцестояний
    solstice points
    точка соприкосновения
    point of contact
    точка с переменными координатами
    variable point
    точка юга
    south
    бесконечно удаленная точка
    1.point of infinity 2.infinitely remote point
    ближняя точка ясного видения
    опт. near point of clear vision
    высшая точка прилива
    high tide
    географическая точка звезды
    sub-stellar point
    дальняя точка ясного видения
    опт. far point of clear vision
    задняя узловая точка
    back nodal point
    звуковая точка
    sonic point
    зеральные точки
    mirror points
    корональные яркие точки
    coronal bright points
    критическая точка
    critical point
    кульминационная точка
    acme
    материальная точка
    1.mass point 2.material point
    мировая точка
    1.space-time point 2.world point
    нейтральная точка
    neutral point
    неподвижная точка
    fixed point
    низшая точка прилива
    low tide
    общая точка
    point in common
    передняя узловая точка
    first nodal point
    подзвездная точка
    sub-stellar point
    подсолнечная точка
    subsolar point
    предельная точка
    limit point
    рабочая точка
    working point
    узловая точка
    nodal point
    факельная точка
    facular point
    фокальная точка
    focal point
    центральная точка
    central point
    яркие точки
    bright points (on the Sun)

    Русско-английский астрономический словарь > точка

  • 15 реакция


    response
    (прибора, системы на внешнее воздействие, изменение входного сигнала) — the motion (or other output) resulting from an excitation under specified conditions.
    - (тепа на прилагаемую к немy силу, химическая) — reaction
    -, аэродинамическая — aerodynamic reaction
    -, быстрая — rapid response /reaction/
    -, вертикальная — vertical reaction
    - землиground reaction
    - земли, вертикальная — vertical ground reaction
    - земли, динамическая — dynamic ground reaction
    динамическая реакция земли на шину шасси при максимальном посадочном весе. — dynamic ground reaction for the tire at maximum landing weight.
    - земли, статическая — static ground reaction
    статическая реакция земли на шину (шасси) при наибос лee неблагоприятных величине взлетного веса и центровки. — static ground reaction for the tire with the most critical combination of takeoff weight and cg position.
    - на действие рулей (органов управления)control response
    - на отклонение руля высоты (элеронов)response to the elevator (aileron) deflection
    - опоры — bearing /support/ reaction
    - по кренуroll response
    - no перегрузкеacceleration response
    - no рысканиюyaw response
    - по тангажуpitch response
    - системыsystem response
    - содержимого бака (на стенки бака) — reaction of the tank contents. load developed by reaction of the contents with the tank full.
    - торможения, горизонтальная — horizontal drag reaction
    отсутствие p. членов экипажа нa к-л. предупреждение (сигналы) — no crew response (to warning)

    Русско-английский сборник авиационно-технических терминов > реакция

  • 16 тропический дождевой лес

    1. tropical rain forest

     

    тропический дождевой лес

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    tropical rain forest
    The most valuable and the richest ecosystem on Earth. It plays a critical part in the Earth's life support systems and house 50%, and possibly as much as 90%, of all the species on Earth. It is a key storehouse of foods, oils and minerals, and a source of ingredients that make up a range of medical treatments. It also represents home and livelihood for many people. However, more than half of the rainforests have disappeared, chopped down for valuable tropical hardwoods, or cleared to provide areas for cattle grazing or human habitation. The forests play an important part in climate patterns, and deforestation is thought to be responsible for 18% of global warming. Furthermore, as they disappear there is also an albedo effect - a damaging increase in the sunlight reflected - which affects wind and rainfall patterns. (Source: WRIGHT)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > тропический дождевой лес

См. также в других словарях:

  • Critical Infrastructure Protection — or CIP is a national program to assure the security of vulnerable and interconnected infrastructures of the United States. In May 1998, President Bill Clinton issued Presidential directive PDD 63 [ [http://www.fas.org/irp/offdocs/pdd/pdd 63.htm… …   Wikipedia

  • Critical rationalism — is an epistemological philosophy advanced by Karl Popper. Popper wrote about critical rationalism in his works, The Open Society and its Enemies Volume 2, and Conjectures and Refutations. Contents 1 Criticism, not support 2 Not justificationism …   Wikipedia

  • Critical Path Institute — (C Path) is an independent, non profit organization committed to transformational improvement of the drug development process. An international leader in forming collaborations around this mission, C Path has established first of its kind, global …   Wikipedia

  • Critical Skills — is an educational curriculum first implemented in 1984 in the United States.It is currently in use in over 10,000 classrooms in the US, UK, and India. History In 1981, a collaborative council of business leaders (DEC, Sanders, Hitcherer), non… …   Wikipedia

  • Critical incident response team — Active 2005 Present Country …   Wikipedia

  • Critical Software — S.A. Type Privately held Industry Information Technology Founded 1998 Founder(s) …   Wikipedia

  • Critical Links — Type Private Industry Communications and IT Equipment Founded 2006 Headquarters …   Wikipedia

  • Critical responses to David Irving — have changed dramatically as David Irving, a writer on the subject of World War II and Nazism, changes his own public political views, further there are doubts as to how far Irving applies the historical method. This article documents some of… …   Wikipedia

  • Critical theory — Horkheimer, Adorno, Habermas David Rasmussen HEGEL, MARX AND THE IDEA OF A CRITICAL THEORY Critical theory1 is a metaphor for a certain kind of theoretical orientation which owes its origin to Hegel and Marx, its systematization to Horkheimer and …   History of philosophy

  • Critical illness insurance — or critical illness cover is an insurance product, where the insurer is contracted to typically make a lump sum cash payment if the policyholder is diagnosed with one of the critical illnesses listed in the insurance policy. The policy may also… …   Wikipedia

  • Critical care nursing — is the field of nursing with a focus on the utmost care of the critically ill or unstable patients. Critical care nurses can be found working in a wide variety of environments and specialties, such as emergency departments and the intensive care… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»